Non-split geometry on products of vector bundles
نویسندگان
چکیده
منابع مشابه
Non-Split Geometry on Products of Vector Bundles
We propose a model in which a spliced vector bundle (with an arbitrary number of gauge structures in the splice) possesses a geometry which do not split. The model employs connection 1-forms with values in a space-product of Lie algebras, and therefore interlaces the various gauge structures in a non-trivial manner. Special attention is given to the structure of the geometric ghost sector and t...
متن کاملOn the Differential Geometry of Homogeneous Vector Bundles
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملNon-simple Vector Bundles on Curves
Let A be a finite dimensional unitary algebra over an algebraically closed field K. Here we study the vector bundles on a smooth projective curve which are equipped with a faithful action of A.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1998
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/31/5/014